SECTION A

Question	Key	Marks	Guidance
1	В	1	
2	В	1	

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(i)	C₄H ₇ C1 ✓	1	
		(ii)	Cl	1	DO NOT ALLOW non-skeletal formulae
		(iii)	(compounds with) the same (molecular) formula AND different structures / structural formulae / arrangement of atoms / displayed formulae ✓	1	ALLOW same number of atoms of each element ALLOW different carbon backbone DO NOT ALLOW different spatial arrangement (of atoms)
	(b)		$n = \frac{pV}{RT} = \frac{(100 \times 10^3) \times (1.053 \times 10^{-3})}{8.314 \times 350} \checkmark$ $n = 0.0362 \text{ mol } \checkmark$ $M = \frac{m}{n} = \frac{1.321}{0.0362} = 36.5 \text{ (g mol}^{-1}) \checkmark$ $Identity$ $HCl \checkmark$	4	
	(c)	(i)	From Reaction 1 = $ \begin{array}{c} H & H \\ H-C-C-C-CH_3 \\ I & I \\ H & CH_2Cl \end{array} $ $ \begin{array}{c} H & H \\ CH_2Cl \end{array} $ $ \begin{array}{c} Cl-C-C-C-CH_3 \\ I & I \\ Cl-C-C-C \end{array} $ $ \begin{array}{c} Cl-C-C-C \\ C-C-C \end{array} $ $ \begin{array}{c} Cl-C-C \\ C-C-C \end{array} $ $ \begin{array}{c} Cl-C-C \\ C-C-C \end{array} $	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Q	uestion	Answer	Marks	Guidance
	(ii)	H CH ₃ C=C H CH ₂ C <i>l</i> Curly arrow from C=C to attack the H atom ✓ H Correct dipole on H C <i>l</i>	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Curly arrow must start from covalent bonds and not atoms
		Correct dipole on H—C <i>l</i> AND curly arrow from bond to C <i>l</i> δ-		DO NOT ALLOW any other partial charges e.g. shown on double bond
		H CH ₃ H C C⊕ With full positive charge shown AND correct curly arrow from negative charge of C to correct carbon atom OR correct curly arrow from lone pair of C to correct carbon atom OR correct carbon atom ✓		DO NOT ALLOW $\mathbb{C}^{\delta+}$ for charge on carbonium ion. Curly arrow from $\mathbb{C}\mathcal{L}$ can start from the negative charge or the lone pair DO NOT ALLOW delta negative, <i>i.e.</i> $\mathbb{C}\mathcal{L}^{\delta-}$
	(iii)	because the <u>intermediate/carbocation</u> in the formation of compound B is <u>less stable</u> (than the intermediate in the formation of compound A)	1	
	(iv)	H CH ₃ C=C H CH ₂ OH ✓ (Formation of) white precipitate/solid/suspension AND (ppt is) silver chloride/AgCl ✓	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Q	uestion			Ans	swer		Marks	Guidance
	(d)	Use of el	emental a	nalysis d	ata		5	
			С	Н	0]		
		%	46.1	7.7	46.2			
		mol	3.84	7.7	2.89	1		
		ratio	1.33	2.66	1			
		empirical IR spectr (very) bro AND abso absorption Identificat conclusion (empirical	ad absorpt orption 164 in 3450 cm ² ation in from data formula co ne previous	C ₄ H ₈ O ₃ ✓ sion 2500- l0–1750 c -¹ (alcohol	-OH) ✓	s –COOH and –OH than in COOH) in		ALLOW any values given within ranges given on Data Sheet ALLOW correct structural OR displayed OR
			COOH ✓					skeletal formulae OR a combination of above as long as unambiguous
						Total	20	

Question	Key	Marks	Guidance
4	В	1	

	lupeti	ion	Anewer	1	Guidance
5	(a)	ion	Answer Compound A (is branched so) has less points of contact / less surface interaction between molecules ✓ Induced dipole–dipole interactions / London (dispersion) forces are weaker. AND Require less energy to break (these interactions / forces) ✓	Marks 2	Guidance Both answers need to be comparisons ALLOW ORA throughout DO NOT ALLOW 'more contact between atoms' IGNORE van der Waals' forces/VDW for induced dipole—dipole interactions (ambiguous as this term refers to both permanent dipole — dipole and induced dipole—dipole forces) ALLOW fewer induced dipole-dipole interactions. IGNORE it is easier to break the induced dipole-dipole / London forces. (reference to energy required) IGNORE less energy required to separate
	(b)	(i)	Hex-3-en-1-ol ✓	1	IGNORE less energy is needed to break the bonds. ALLOW Hex-3-ene-1-ol ALLOW 1-hydroxyhex-3-ene as this is unambiguous Hex-3-enol is not sufficient IGNORE lack of hyphens, or addition of commas

	Wark Schie	_			
Question	Answer	Marks	Guidance		
Question (iii)	Answer Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) ✓ CH ₃ CH ₂ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH	Marks 1	ALLOW have the same structure/displayed formula/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula Reference to E/Z isomerism or optical isomerism is not sufficient ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW one mark if both stereoisomers of		
	H H ✓ CH ₃ CH ₂ H ✓ cis trans		compound C are shown but in the incorrect columns ALLOW one mark for correct stereoisomers of compound C in correct columns where — CH ₂ CH ₂ OH is represented as -C ₂ H ₅ O or — C ₂ H ₄ OH DO NOT ALLOW incorrect connectivity e.g. — CH ₃ CH ₂ on first occasion but allow ECF in second structure.		

Question	Answer	Marks	Guidance
(c)	Two p-orbitals shown as a "dumb-bell" added to structure on left. AND π-bond on structure on right ✓	1	DO NOT ALLOW overlapping p orbitals on left hand side in the diagram. DO NOT ALLOW a diagram that contains four lobes on the right hand side. e.g. IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
(d) (i)	(The H atom of HBr) accepts a pair of electrons ✓	1	
(ii)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW in either order

Question	Answer		Guidance
Question (iii)	Answer Curly arrow from C=C bond to H of H–Br ✓ Correct dipole shown on H–Br AND curly arrow showing the breaking of H–Br bond ✓ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ COrrect carbocation AND curly arrow from Br⁻ to C⁺ of carbocation ✓	Marks 3	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW partial charges shown on C=C double bond (the second marking point)
	CH ₃ CH ₂ CH ₃ $CH_3 - C - C - H$ $H + Br^-$ OR $CH_3 - C - C - H$ $H + Br^-$		DO NOT ALLOW δ + on C of carbocation Curly arrow must come from a lone pair on Br or

Q	uesti	ion	Answer	Marks	Guidance
		(iv)	CH ₃ CH ₂ CH ₃ H ₃ C — C — H 2-bromo-2-methylpentane AND (the) carbocation intermediate (in the formation of 2-bromo-2-methylpentane) is more stable (than the carbocation in the formation of the other product) ✓	1	Note: the correct product and explanation are both required for the mark The major product may be identified by its corresponding letter (E or F) from the table in (d)(ii) correct structure correct name DO NOT ALLOW product comes from the more stable secondary or primary carbocation
	(e)	(i)	$n(\text{myrcene}) = \frac{204 \times 10^{-3}}{136.0} = 1.5(0) \times 10^{-3} \text{ (mol) } \checkmark$	2	IGNORE explanations based on Markownikoff's rule. Correct working required for the first marking point.
			Volume of H_2 = 3 × 1.5(0) × 10 ⁻³ × 24000 = 108 (cm ³) \checkmark		ALLOW ECF from incorrect moles of myrcene i.e. $n(\text{myrcene}) \times 3 \times 24000$ Common incorrect answers 108000 cm³ = 1 mark (not converted to g) 12cm³ = 1 mark (divided by 3) 36 cm³ = 1 mark (not multiplied by 3) IGNORE Calculations based on $pV = nRT$

Question	Answer	Marks	Guidance
(ii)	Amount of hydrogen	4	
	$n(H_2) = \frac{5.28}{24.0} = 0.22(0) \text{ (mol)} \checkmark$ Number of double bonds		ALLOW Evidence of $n(H_2) = \frac{5.28}{24.0}$ if 0.22 is not seen
	$=\frac{0.220}{0.0200}=11\checkmark$		Evidence for 11 double bonds could come from 11H ₂ in equation
	Formula of saturated product		
	C ₄₀ H ₇₈ ✓		
	Equation		Formula could be shown as the product of an equation
	$C_{40}H_{56} + 11H_2 \longrightarrow C_{40}H_{78} \checkmark$		
			ALLOW ECF from $C_{40}H_{82}$ and $C_{40}H_{80}$ only i.e. $C_{40}H_{60}$ + $11H_2 \longrightarrow C_{40}H_{82}$ $C_{40}H_{58}$ + $11H_2 \longrightarrow C_{40}H_{80}$
	Total	20	

Question	Answer	Marks	AO element	Guidance
6	С	1	AO1.2	
7	С	1	AO1.2	ALLOW E (This is the correct term)
8	D	1	AO2.5	
9	Α	1	AO1.2	
10	D	1	AO1.2	